로봇공학과

로봇공학은 4차산업혁명의 가장 중요한 기술 중 하나입니다. 로봇공학과에서는 융합학문인 로봇공학을 체계적으로 교육하기 위하여 기계, 전기, 전자, 컴퓨터 등 로봇에 필요한 여러 학문을 융합하여 독창적인 교육 커리큘럼을 제공하고 있습니다. 또한 HY-MEC을 비롯한 동아리 활동과 국내외 권위있는 로봇 경진 대회 출전을 통해 이론뿐 아니라 실제 현장 경험도 쌓을 수 있도록 적극적으로 지원하고 있습니다. 2013년 개설 후 짧은 기간임에도 불구하고 권위있는 국내외 로봇 경진대회에서 수차례 수상함으로써 로봇공학과의 교육 우수성이 대내외 적으로 증명되고 있습니다. 졸업생들은 로봇 기업 취업 및 스타트업 창업, 정부 출연 연구소의 연구원. 국내외 명문 대학원 진학 등으로 진로를 개척해 나아가고 있으며 향후 기업의 리더 및 정부 정책 입안자, 교수 등으로의 활약이 기대됩니다.

장학금 제도

입학 레인보우

한양형제자매, 사랑의 실천, 실용인재

교외 교외단체, 향토

국가 국가(이공계), 국가(가계 곤란1, 2유형), 국가(푸른등대 기부장학), 국가(근로), 보훈, 북한이탈주민

학과 주요활동

IC-PBL: IC-PBL 수업으로 실제 산업현장에서 쓰일 수 있는 실용적 교육 HY-MEC: HY-MEC 동아리 활동 등 다양한 학술 활동 지원

학사제도

- · 2학년부터 SW트랙 또는 HW트랙 중 하나를 선택하여 수강할 수 있도록 함으로써 학생의 적성이 고려된 심도 높은 로봇공학 수업을 제공함
- ·해외 명문 대학과 교환학생 프로그램 수행
- · 첨단분야 혁신융합대학사업 참여
- · 디지털 신기술 인재양성 혁신공유대학 참여
- · 지역 간·대학 간 교육 역량 차이를 해소하기 위해 인적·물적 자원을 상호 공유하여 국가 수준의 핵심인재 양성 체계 구축

교수, 기업 연구소 연구원, 기업 경영전략 연구원, 정부출연 연구소 연구원, 로봇관련 정부정책 입안자

주요 취업처

삼성전자, LG전자, SK텔레콤, 현대로보틱스, 한화로보틱스, 두산로보틱스, 뉴로메카, 유진로봇, 로보티즈 등

무엇을 배우나요?

남녀성비

8:2

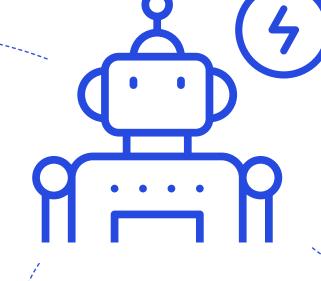
학년별 **CURRICULUM**

학과 설립연도(년)

2013

IC-PBL과비전설계, 소프트웨어의이해, 인공지능과미래사회, 아카데믹글쓰기, 미분적분학1·2. 일반물리학1·2. 일반물리학실험1, 기초로봇공학개론, 인공지능로봇의이해, 초급중국어, 공업수학1, C프로그래밍, 기초로봇공학실험, 어드벤쳐디자인1

학생수(명)


292

IC-PBL과취·창업을위한진로탐색, 학술영어1:통합, 공업수학2, 어드벤쳐디자인2, 로봇공학입문설계, 정역학, 이산수학, 회로이론1 학술영어2:글쓰기, 동역학,

로봇프로그래밍, 디지털논리회로설계, 전기전자회로, 수치계산

로봇공학, 시스템해석, 기구학, 확률과통계, 컴퓨터구조론, 고체역학, 디지털신호처리, 로봇공학과연구실심화실습1. IC-PBL과역량계발, 제어공학, 협동로봇설계1, 기계학습론, 지능형로봇크래쉬랩, 로봇공학과 연구실심화실습2, 로봇캡스톤디자인1, 산학 및 융합캡스톤디자인1, 사이버물리시스템

로봇공학실험, 로봇비젼시스템, 기계설계, 로봇공학과연구실심화실습3, 로봇캡스톤디자인2, 산학 및 융합캡스톤디자인2, 로봇지능, 기계제작공정, 로봇공학과 연구실심화실습4, 4차산업혁명과 창업설계, 딥러닝

4차산업혁명시대의 핵심인

인공지능 로봇을 만들어낼

미래의 고급 인재 육성

수상실적

- · 2022 RoboCup 휴머노이드 어덜트 사이즈 리그 준우승
- · 2022 88로봇대회 쉐어 챌린지 최우수상
- · 2022 WCRC 대회 국가기술원장상 및 특허청장상
- · 2022 안산시 청년혁신가 대회 우수상
- · 2022 소프트웨어 창업메이커톤 4회 우수상
- · 2022 참조표준 아이디어 공모전 한국표준협회 회장상
- · 2019 RoboCup 한국오픈 휴머노이드 어덜트사이즈 리그 우승
- · 2018 국내최초 RoboCup 휴머노이드 어덜트사이즈 리그 본선진출
- · 2017 국제로봇콘테스트 R-Biz 챌린지 로봇멀티미션챌린지 은상, 동상
- · 2017 Robofest 2017 국제로봇 경진대회(Lawrence Tech.) 대학부 우승
- · 2017 Turtlebot3 Autorace 대통령상
- · 2016 국제로봇콘테스트 대통령상, 장관상, 진흥원장상 수상

INTERVIEW | 김민우

로봇공학과의 장점은 융합적인 학문을 배우다 보니 기계, 전자, 컴퓨터 관련 지식을 모두 접할 수 있다는 것입니다. 또한, 전공 지식을 책으로만 익히지 않고 로봇을 실제로 개발하는 과정을 통해 직접 코딩하고, 제작하는 과정을 배울 수 있다는 장점이 있습니다. 로봇공학과의 수업은 실습과 이론의 비율이 약 7:3 정도로 실습의 비율이 굉장히 높으며 프로젝트 개발 과정에서 학교, 학과, 학회 측에서는 관련 비용들을 많이 지원해주고 있습니다. 자기 주도적으로 문제를 해결할 수 있는 끈기를 가진 학생들이 오면 좋을 것 같습니다. 개발 과정에서 수업 시간에 배운 전공 지식만으로는 원하는 기능들을 구현하기 힘든 경우가 있어, 스스로 노력하는 모습을 가진 학생들이면 학과 수업 프로젝트에서도 잘 적응하실 수 있을 것 같습니다.

공학대학 | COLLEGE OF ENGINEERING SCIENCES